algorithm

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub satashun/algorithm

:warning: cpp_src/math/FormalPowerSeries.hpp

Code

// depends on FFT libs
// work only with NTT-friendly mod 

NumberTheoreticTransform<Mint> ntt;

struct prepare_FPS {
    prepare_FPS() { ntt.init(); }
} prep_FPS;

template <class D>
struct Poly : public V<D> {
    template <class... Args>
    Poly(Args... args) : V<D>(args...) {}
    Poly(initializer_list<D> init) : V<D>(init.begin(), init.end()) {}

    int size() const { return V<D>::size(); }
    D at(int p) const { return (p < this->size() ? (*this)[p] : D(0)); }
    
    void shrink() {
        while (this->size() > 0 && this->back() == D(0)) this->pop_back();
    }

    // first len terms
    Poly pref(int len) const {
        return Poly(this->begin(), this->begin() + min(this->size(), len));
    }

    // for polynomial division
    Poly rev() const {
        Poly res = *this;
        reverse(res.begin(), res.end());
        return res;
    }

    Poly shiftr(int d) const {
        int n = max(size() + d, 0);
        Poly res(n);
        for (int i = 0; i < size(); ++i) {
            if (i + d >= 0) {
                res[i + d] = at(i);
            }
        }
        return res;
    }

    Poly operator+(const Poly& r) const {
        auto n = max(size(), r.size());
        V<D> tmp(n);
        for (int i = 0; i < n; ++i) {
            tmp[i] = at(i) + r.at(i);
        }
        return tmp;
    }
    Poly operator-(const Poly& r) const {
        auto n = max(size(), r.size());
        V<D> tmp(n);
        for (int i = 0; i < n; ++i) {
            tmp[i] = at(i) - r.at(i);
        }
        return tmp;
    }

    // scalar
    Poly operator*(const D& k) const {
        int n = size();
        V<D> tmp(n);
        for (int i = 0; i < n; ++i) {
            tmp[i] = at(i) * k;
        }
        return tmp;
    }

    Poly operator*(const Poly& r) const {
        Poly a = *this;
        Poly b = r;
        auto v = ntt.mul(a, b);
        return v;
    }

    // scalar
    Poly operator/(const D& k) const { return *this * k.inv(); }

    Poly operator/(const Poly& r) const {
        if (size() < r.size()) {
            return {{}};
        }
        int d = size() - r.size() + 1;
        return (rev().pref(d) * r.rev().inv(d)).pref(d).rev();
    }

    Poly operator%(const Poly& r) const {
        auto res = *this - *this / r * r;
        res.shrink();
        return res;
    }

    Poly diff() const {
        V<D> res(max(0, size() - 1));
        for (int i = 1; i < size(); ++i) {
            res[i - 1] = at(i) * i;
        }
        return res;
    }

    Poly inte() const {
        V<D> res(size() + 1);
        for (int i = 0; i < size(); ++i) {
            res[i + 1] = at(i) / (D)(i + 1);
        }
        return res;
    }

    // f * f.inv(m) === 1 mod (x^m)
    // f_0 ^ -1 must exist
    Poly inv(int m) const {
        Poly res = Poly({D(1) / at(0)});
        for (int i = 1; i < m; i *= 2) {
            res = (res * D(2) - res * res * pref(i * 2)).pref(i * 2);
        }
        return res.pref(m);
    }

    // f_0 = 1 must hold
    Poly log(int n) const {
        auto f = pref(n);
        return (f.diff() * f.inv(n - 1)).pref(n - 1).inte();
    }

    // f_0 = 0 must hold
    Poly exp(int n) const {
        auto h = diff();
        Poly f({1}), g({1});

        for (int m = 1; m < n; m *= 2) {
            g = (g * D(2) - f * g * g).pref(m);
            auto q = h.pref(m - 1);
            auto w = (q + g * (f.diff() - f * q)).pref(m * 2 - 1);
            f = (f + f * (*this - w.inte()).pref(m * 2)).pref(m * 2);
        }

        return f.pref(n);
    }

    // front n elements of f(x)^k
    // be careful when k = 0
    Poly pow(ll k, int n) const {
        int zero = 0;
        while (zero < size() && at(zero) == 0) {
            zero++;
        }

        if (zero == size() || zero * k >= n) {
            Poly res(n);
            if (n > 0 && k == 0) res[0] = 1;
            return res;
        }

        Poly h(this->begin() + zero, this->end());
        D a = h[0], ra = D(1) / a;
        h *= ra;
        h = h.log(n - zero * k) * D(k);
        h = h.exp(n - zero * k);
        h = h.shiftr(zero * k) * a.pow(k);
        return h;
    }

    // f_0 = 1 must hold (use it with modular sqrt)
    // CF250E
    Poly sqrt(int n) const {
        Poly f = pref(n);
        Poly g({1});
        for (int i = 1; i < n; i *= 2) {
            g = (g + f.pref(i * 2) * g.inv(i * 2)) * D(2).inv();
        }
        return g.pref(n);
    }

    D eval(D x) const {
        D res = 0, c = 1;
        for (auto a : *this) {
            res += a * c;
            c *= x;
        }
        return res;
    }

    Poly powmod(ll k, const Poly& md) {
        auto v = *this % md;
        Poly res{1};
        while (k) {
            if (k & 1) {
                res = res * v % md;
            }
            v = v * v % md;
            k /= 2;
        }
        return res;
    }

    Poly& operator+=(const Poly& r) { return *this = *this + r; }
    Poly& operator-=(const Poly& r) { return *this = *this - r; }
    Poly& operator*=(const D& r) { return *this = *this * r; }
    Poly& operator*=(const Poly& r) { return *this = *this * r; }
    Poly& operator/=(const Poly& r) { return *this = *this / r; }
    Poly& operator/=(const D& r) { return *this = *this / r; }
    Poly& operator%=(const Poly& r) { return *this = *this % r; }

    friend ostream& operator<<(ostream& os, const Poly& pl) {
        if (pl.size() == 0) return os << "0";
        for (int i = 0; i < pl.size(); ++i) {
            if (pl[i]) {
                os << pl[i] << "x^" << i;
                if (i + 1 != pl.size()) os << ",";
            }
        }
        return os;
    }

    explicit operator bool() const {
        bool f = false;
        for (int i = 0; i < size(); ++i) {
            if (at(i)) {
                f = true;
            }
        }
        return f;
    }
};

// calculate characteristic polynomial
// c_0 * s_i + c_1 * s_{i+1} + ... + c_k * s_{i+k} = 0
// c_k = -1

template <class T>
Poly<T> berlekamp_massey(const V<T>& s) {
    int n = int(s.size());
    V<T> b = {T(-1)}, c = {T(-1)};
    T y = Mint(1);
    for (int ed = 1; ed <= n; ed++) {
        int l = int(c.size()), m = int(b.size());
        T x = 0;
        for (int i = 0; i < l; i++) {
            x += c[i] * s[ed - l + i];
        }
        b.push_back(0);
        m++;
        if (!x) {
            continue;
        }
        T freq = x / y;
        if (l < m) {
            auto tmp = c;
            c.insert(begin(c), m - l, Mint(0));
            for (int i = 0; i < m; i++) {
                c[m - 1 - i] -= freq * b[m - 1 - i];
            }
            b = tmp;
            y = x;
        } else {
            for (int i = 0; i < m; i++) {
                c[l - 1 - i] -= freq * b[m - 1 - i];
            }
        }
    }
    return c;
}

// HUPC 2020 day3 K, ABC225H
// calculate vec[0] * vec[1] * ...
// deg(result) must be bounded

template <class T>
Poly<T> prod(const V<Poly<T>>& vec) {
    auto comp = [](const auto& a, const auto& b) -> bool {
        return a.size() > b.size();
    };
    priority_queue<Poly<T>, V<Poly<T>>, decltype(comp)> que(comp);
    que.push(Poly<T>{1});

    for (auto& pl : vec) que.push(pl);

    while (que.size() > 1) {
        auto va = que.top();
        que.pop();
        auto vb = que.top();
        que.pop();
        que.push(va * vb);
    }

    return que.top();
}

// ABC215 G
// expand f(x + c)
// require factorial
template <class T>
Poly<T> taylor_shift(const Poly<T>& f, ll c) {
    using P = Poly<T>;
    int n = f.size();
    T powc = 1;
    P p(n), q(n);

    rep(i, n) {
        p[i] = f[i] * fact[i];
        q[n - 1 - i] = powc * ifact[i];
        powc *= c;
    }
    p = p * q;
    rep(i, n) q[i] = p[n - 1 + i] * ifact[i];
    return q;
}
#line 1 "cpp_src/math/FormalPowerSeries.hpp"
// depends on FFT libs
// work only with NTT-friendly mod 

NumberTheoreticTransform<Mint> ntt;

struct prepare_FPS {
    prepare_FPS() { ntt.init(); }
} prep_FPS;

template <class D>
struct Poly : public V<D> {
    template <class... Args>
    Poly(Args... args) : V<D>(args...) {}
    Poly(initializer_list<D> init) : V<D>(init.begin(), init.end()) {}

    int size() const { return V<D>::size(); }
    D at(int p) const { return (p < this->size() ? (*this)[p] : D(0)); }
    
    void shrink() {
        while (this->size() > 0 && this->back() == D(0)) this->pop_back();
    }

    // first len terms
    Poly pref(int len) const {
        return Poly(this->begin(), this->begin() + min(this->size(), len));
    }

    // for polynomial division
    Poly rev() const {
        Poly res = *this;
        reverse(res.begin(), res.end());
        return res;
    }

    Poly shiftr(int d) const {
        int n = max(size() + d, 0);
        Poly res(n);
        for (int i = 0; i < size(); ++i) {
            if (i + d >= 0) {
                res[i + d] = at(i);
            }
        }
        return res;
    }

    Poly operator+(const Poly& r) const {
        auto n = max(size(), r.size());
        V<D> tmp(n);
        for (int i = 0; i < n; ++i) {
            tmp[i] = at(i) + r.at(i);
        }
        return tmp;
    }
    Poly operator-(const Poly& r) const {
        auto n = max(size(), r.size());
        V<D> tmp(n);
        for (int i = 0; i < n; ++i) {
            tmp[i] = at(i) - r.at(i);
        }
        return tmp;
    }

    // scalar
    Poly operator*(const D& k) const {
        int n = size();
        V<D> tmp(n);
        for (int i = 0; i < n; ++i) {
            tmp[i] = at(i) * k;
        }
        return tmp;
    }

    Poly operator*(const Poly& r) const {
        Poly a = *this;
        Poly b = r;
        auto v = ntt.mul(a, b);
        return v;
    }

    // scalar
    Poly operator/(const D& k) const { return *this * k.inv(); }

    Poly operator/(const Poly& r) const {
        if (size() < r.size()) {
            return {{}};
        }
        int d = size() - r.size() + 1;
        return (rev().pref(d) * r.rev().inv(d)).pref(d).rev();
    }

    Poly operator%(const Poly& r) const {
        auto res = *this - *this / r * r;
        res.shrink();
        return res;
    }

    Poly diff() const {
        V<D> res(max(0, size() - 1));
        for (int i = 1; i < size(); ++i) {
            res[i - 1] = at(i) * i;
        }
        return res;
    }

    Poly inte() const {
        V<D> res(size() + 1);
        for (int i = 0; i < size(); ++i) {
            res[i + 1] = at(i) / (D)(i + 1);
        }
        return res;
    }

    // f * f.inv(m) === 1 mod (x^m)
    // f_0 ^ -1 must exist
    Poly inv(int m) const {
        Poly res = Poly({D(1) / at(0)});
        for (int i = 1; i < m; i *= 2) {
            res = (res * D(2) - res * res * pref(i * 2)).pref(i * 2);
        }
        return res.pref(m);
    }

    // f_0 = 1 must hold
    Poly log(int n) const {
        auto f = pref(n);
        return (f.diff() * f.inv(n - 1)).pref(n - 1).inte();
    }

    // f_0 = 0 must hold
    Poly exp(int n) const {
        auto h = diff();
        Poly f({1}), g({1});

        for (int m = 1; m < n; m *= 2) {
            g = (g * D(2) - f * g * g).pref(m);
            auto q = h.pref(m - 1);
            auto w = (q + g * (f.diff() - f * q)).pref(m * 2 - 1);
            f = (f + f * (*this - w.inte()).pref(m * 2)).pref(m * 2);
        }

        return f.pref(n);
    }

    // front n elements of f(x)^k
    // be careful when k = 0
    Poly pow(ll k, int n) const {
        int zero = 0;
        while (zero < size() && at(zero) == 0) {
            zero++;
        }

        if (zero == size() || zero * k >= n) {
            Poly res(n);
            if (n > 0 && k == 0) res[0] = 1;
            return res;
        }

        Poly h(this->begin() + zero, this->end());
        D a = h[0], ra = D(1) / a;
        h *= ra;
        h = h.log(n - zero * k) * D(k);
        h = h.exp(n - zero * k);
        h = h.shiftr(zero * k) * a.pow(k);
        return h;
    }

    // f_0 = 1 must hold (use it with modular sqrt)
    // CF250E
    Poly sqrt(int n) const {
        Poly f = pref(n);
        Poly g({1});
        for (int i = 1; i < n; i *= 2) {
            g = (g + f.pref(i * 2) * g.inv(i * 2)) * D(2).inv();
        }
        return g.pref(n);
    }

    D eval(D x) const {
        D res = 0, c = 1;
        for (auto a : *this) {
            res += a * c;
            c *= x;
        }
        return res;
    }

    Poly powmod(ll k, const Poly& md) {
        auto v = *this % md;
        Poly res{1};
        while (k) {
            if (k & 1) {
                res = res * v % md;
            }
            v = v * v % md;
            k /= 2;
        }
        return res;
    }

    Poly& operator+=(const Poly& r) { return *this = *this + r; }
    Poly& operator-=(const Poly& r) { return *this = *this - r; }
    Poly& operator*=(const D& r) { return *this = *this * r; }
    Poly& operator*=(const Poly& r) { return *this = *this * r; }
    Poly& operator/=(const Poly& r) { return *this = *this / r; }
    Poly& operator/=(const D& r) { return *this = *this / r; }
    Poly& operator%=(const Poly& r) { return *this = *this % r; }

    friend ostream& operator<<(ostream& os, const Poly& pl) {
        if (pl.size() == 0) return os << "0";
        for (int i = 0; i < pl.size(); ++i) {
            if (pl[i]) {
                os << pl[i] << "x^" << i;
                if (i + 1 != pl.size()) os << ",";
            }
        }
        return os;
    }

    explicit operator bool() const {
        bool f = false;
        for (int i = 0; i < size(); ++i) {
            if (at(i)) {
                f = true;
            }
        }
        return f;
    }
};

// calculate characteristic polynomial
// c_0 * s_i + c_1 * s_{i+1} + ... + c_k * s_{i+k} = 0
// c_k = -1

template <class T>
Poly<T> berlekamp_massey(const V<T>& s) {
    int n = int(s.size());
    V<T> b = {T(-1)}, c = {T(-1)};
    T y = Mint(1);
    for (int ed = 1; ed <= n; ed++) {
        int l = int(c.size()), m = int(b.size());
        T x = 0;
        for (int i = 0; i < l; i++) {
            x += c[i] * s[ed - l + i];
        }
        b.push_back(0);
        m++;
        if (!x) {
            continue;
        }
        T freq = x / y;
        if (l < m) {
            auto tmp = c;
            c.insert(begin(c), m - l, Mint(0));
            for (int i = 0; i < m; i++) {
                c[m - 1 - i] -= freq * b[m - 1 - i];
            }
            b = tmp;
            y = x;
        } else {
            for (int i = 0; i < m; i++) {
                c[l - 1 - i] -= freq * b[m - 1 - i];
            }
        }
    }
    return c;
}

// HUPC 2020 day3 K, ABC225H
// calculate vec[0] * vec[1] * ...
// deg(result) must be bounded

template <class T>
Poly<T> prod(const V<Poly<T>>& vec) {
    auto comp = [](const auto& a, const auto& b) -> bool {
        return a.size() > b.size();
    };
    priority_queue<Poly<T>, V<Poly<T>>, decltype(comp)> que(comp);
    que.push(Poly<T>{1});

    for (auto& pl : vec) que.push(pl);

    while (que.size() > 1) {
        auto va = que.top();
        que.pop();
        auto vb = que.top();
        que.pop();
        que.push(va * vb);
    }

    return que.top();
}

// ABC215 G
// expand f(x + c)
// require factorial
template <class T>
Poly<T> taylor_shift(const Poly<T>& f, ll c) {
    using P = Poly<T>;
    int n = f.size();
    T powc = 1;
    P p(n), q(n);

    rep(i, n) {
        p[i] = f[i] * fact[i];
        q[n - 1 - i] = powc * ifact[i];
        powc *= c;
    }
    p = p * q;
    rep(i, n) q[i] = p[n - 1 + i] * ifact[i];
    return q;
}
Back to top page