This documentation is automatically generated by online-judge-tools/verification-helper
struct FordFulkerson {
static constexpr int INF = TEN(9);
struct edge {
int to, cap, rev;
};
int n;
VV<edge> g;
V<bool> used;
FordFulkerson(int n) : n(n), g(n), used(n) {}
void add_edge(int from, int to, int cap, int rcap) {
g[from].push_back((edge){to, cap, (int)g[to].size()});
g[to].push_back((edge){from, rcap, (int)g[from].size() - 1});
}
int dfs(int v, int t, int f) {
if (v == t) return f;
used[v] = true;
for (auto& e : g[v]) {
if (!used[e.to] && e.cap > 0) {
int d = dfs(e.to, t, min(f, e.cap));
if (d > 0) {
e.cap -= d;
g[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
int max_flow(int s, int t) {
int flow = 0;
while (1) {
fill(used.begin(), used.end(), false);
int f = dfs(s, t, INF);
if (f == 0) return flow;
flow += f;
}
}
};
#line 1 "cpp_src/graph/FordFulkerson.cpp"
struct FordFulkerson {
static constexpr int INF = TEN(9);
struct edge {
int to, cap, rev;
};
int n;
VV<edge> g;
V<bool> used;
FordFulkerson(int n) : n(n), g(n), used(n) {}
void add_edge(int from, int to, int cap, int rcap) {
g[from].push_back((edge){to, cap, (int)g[to].size()});
g[to].push_back((edge){from, rcap, (int)g[from].size() - 1});
}
int dfs(int v, int t, int f) {
if (v == t) return f;
used[v] = true;
for (auto& e : g[v]) {
if (!used[e.to] && e.cap > 0) {
int d = dfs(e.to, t, min(f, e.cap));
if (d > 0) {
e.cap -= d;
g[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
int max_flow(int s, int t) {
int flow = 0;
while (1) {
fill(used.begin(), used.end(), false);
int f = dfs(s, t, INF);
if (f == 0) return flow;
flow += f;
}
}
};